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Introduction 

Lawrence Berkeley Laboratory (LBL) first began working on seasonal 

thermal energy storage in aquifers in 1976. Initial studies have included 

comprehensive generic calculations based on a numerical model to calculate 

the coupled heat and fluid flows in a three~dimensional, complex-geometry 

aquifer system. Various situations have been considered, including hot or 

cold water storage, storage for different periods of ·time, inhomogeneity of 

the storage aquifer, the presence of barriers, regional flow, and the situ

ation of a storage well partially or fully penetrating the aquifer. Many 

of the results have been published in a series of papers (for example, 1-3). 

In 1978, LBL organized and hosted the First International Workshop on 

Aquifer Thermal Energy Storage. Active workers from nine countries partici

pated in this workshop and their contributions were published in the work

shop proceedings (4). Since the workshop, a periodic newsletter (5) has 

kept researchers abreast of the current status of various projects worldwide. 

Many of these projects are reviewed in invited conference review papers pub

lished in 1979 (6, 7). 

During fiscal year 1979 (October 1978-September 1979) major LBL work 

involved the numerical modeling of the recently completed hot water storage 

field experiments at Auburn Universi·ty. This work was funded by the U. S. 

Department of Energy, Energy Storage Division, through Battelle Pacific 

Northwest Laboratory and Oak Ridge National Laboratory. Work was also done, 

under separate funding, on the basic understanding of thermal stratification 

dispersion, and buoyancy flow in an aquifer used for hot or cold water stor

age. These questions are crucial in determining the efficiency of aquifer 

and will be discussed elsewhere (8, 9). 

The remainder of this paper will summarize the results of the simula

tion of Auburn field experiments. Details of the simulation will be plili

lished in a paper under preparation. 
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Simulation of Auburn Field Experiments 

The recent by Auburn University involved two injection-

storage-recovery cycles. Details may be found in a companion paper (10). 

The first six-month injection-storage-production cycle involved the storage 

of 55,000 m3 of water at about 55°C. The injection took 79.2 days, at the 

end of which the hot water was stored for 52.5 days. Production was then 

started at an average rate of 245.6 gpm until the recovered water tempera

ture fell to 32.8°C. At that point 66% of the injected energy was recovered. 

The second injection-storage-production cycle was carried out in essentially 

the same manner, using 58,000 m3 of water at an average temperature of 

55.4°C. When the production temperature had dropped to 33°C a recovery of 

76% of the injected energy was realized. 

The first stage of the simulation involved the determination of the 

hydraulic parameters of the aquifer (the transmissivity and storativity) , 

and the location of a linear hydrologic barrier through well test analysis. 

Conventional well test type curve analysis techniques require a constant or 

carefully controlled flow rate. To get around this limitation, LBL has 

developed a computer-assisted analysis method, program ANALYZE (11, 12) that 

can handle a system of several production and injection wells, each flowing 

at an arbitrarily varying flow rate. This program was applied to the Auburn 

case, treating the injection period also as a part of the well test data (13). 

With parameters thus obtained, the LBL three-dimensional, complex geom

etry, single-phase model, CCC, was used to make detailed modeling studies. 

A radially symmetric mesh was assumed. There is one major hydrologic param

eter that was not determined by well test analysis. This parameter, the 

ratio of vertical to horizontal permeability, has to be inferred from field 

experience and parameter studies. After making a preliminary parameter 

study, a value of 0.10 was decided for this ratio. The same ratio was sug

gested by the USGS (14). 
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Because neither the injection flow rate nor temperature was held con

stant, it was necessary in our simulations to break up both the injection 

and production periods into segments having average flow rate and tempera

ture values, conserving injected mass and energy (Fig. 1). Results of the 

simulation include the recovery factor, plots of production temperature 

versus time, as well as temperature contour plots and temperature profiles 

at various times during the injection, storage, and production periods. 

Both the first and second cycles have been successfully simulated. 

For the first cycle, the simulated recovery factor of 0.68 agrees well 

with the observed value of 0.66. For the second cycle the simulated value 

is 0.78 and the observed value is 0.76. The details of the comparison be

tween simulated and observed energy recovery can be studied in production 

temperature versus time plots (Figs. 2 and 3). For both cycles, the initial 

simulated and observed temperatures agree (55"C). During the early part of 

the production period, the observed temperature decreases slightly faster 

than the simulated temperature so that by the end of the production period 

the simulated and observed temperatures again agree (33"C). The discrepancy 

over the whole range is at most one to two degrees. 

Temperature contour maps of vertical cross sections of the aquifer at 

given times (e.g., Fig. 4) show the details of buoyancy flow, heat loss 

through the upper and lower confining layers, and the radial extent of the 

hot water in the aquifer. Buoyancy flow is important in this rather perm

eable system. Comparison with temperatures recorded in observation wells 

throughout the aquifer show that the simulated temperature distribution 

agrees generally with observed temperatures. However, these discrepancies 

are much larger than the differences between calculated and observed produc

tion temperatures. Apparently there are local variations in the aquifer 

which tend to average out. Temperatures versus radial distance at given 

depths and times are also plotted (Figs. 5, 6) and, from these profiles, 

3 



the effects of thermal conductivity and dispersion on the shape of the 

thermal front can be studied. 

In order to prove the mesh~independence of these results, the first 

cycle has been modeled again, using first a coarser mesh (doubling the 

radial step) and then a finer mesh (half the radial step). The coarse mesh 

recovery factor is 0.65 compared with a value of 0.66 using the first mesh. 

Interestingly, the coarse mesh simulation yields a recovery factor slightly 

closer to the observed value than does the original simulation, so the in~ 

creased numerical dispersion may be more closely simulating thermal disper

sion due to local heterogeneities in the aquifer. Temperature as a function 

of radial distance (Fig. 7) and the production temperature as a function of 

time (Fig. 8) show the insensitivity of the results to the mesh chosen. 

Plans .for Next Year 

In the coming year we have been asked by the Department of Energy, 

t.hrough Battelle Pacific Northwest Laboratory, to model the Texas A and M 

University chilled~water storage experiment that was recently completed. 

Further generic and parameter studies will be made, including calculations 

of effects of varying the ratio of vertical and horizontal permeabilities, 

the storativity parameter, the storage temperatures and effects of the well 

partially or fully penetrating the aquifer. The Aquifer Thermal Energy 

Storage Newsletter, edited and published by Lawrence Berkeley Laboratory, 

will also be continued. 
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